1. Estimate to equally partition and label the fractional units on the number line. Label the wholes as fractions and box them. The first one is done for you.

a. \(\frac{1}{3} \)

\[
\begin{array}{cccccc}
3 & 3 & \frac{4}{3} & 5 & \frac{6}{3} & \frac{7}{3} & \frac{8}{3} & \frac{9}{3} \\
\end{array}
\]

b. \(\frac{1}{8} \)

\[
\begin{array}{cccccccc}
\frac{16}{8} & \frac{17}{8} & \frac{18}{8} & \frac{19}{8} & \frac{20}{8} & \frac{21}{8} & \frac{22}{8} & \frac{23}{8} & \frac{24}{8} \\
\end{array}
\]

c. \(\frac{1}{4} \)

\[
\begin{array}{cccccc}
\frac{8}{4} & \frac{9}{4} & \frac{10}{4} & \frac{11}{4} & \frac{12}{4} & \frac{13}{4} & \frac{14}{4} & \frac{15}{4} & \frac{16}{4} \\
\end{array}
\]

d. \(\frac{1}{2} \)

\[
\begin{array}{cccc}
\frac{6}{2} & \frac{7}{2} & \frac{8}{2} & \frac{9}{2} & \frac{10}{2} \\
\end{array}
\]

e. \(\frac{1}{5} \)

\[
\begin{array}{cccccccc}
\frac{30}{5} & \frac{31}{5} & \frac{32}{5} & \frac{33}{5} & \frac{34}{5} & \frac{35}{5} & \frac{36}{5} & \frac{37}{5} & \frac{38}{5} & \frac{39}{5} & \frac{40}{5} & \frac{41}{5} & \frac{42}{5} & \frac{43}{5} & \frac{44}{5} & \frac{45}{5} \\
\end{array}
\]
2. Partition each whole into 6 unit fractions. Label each fraction. Count up as you go. Box the whole numbers. Box the fractions that are located at the same points as whole numbers.

![Diagram showing fractions from 1/6 to 5/6]

3. Partition each whole into 2 unit fractions. Label each fraction. Count up as you go. Box the fractions that are located at the same points as whole numbers.

![Diagram showing fractions from 1/2 to 7/2]

4. Draw a number line with endpoints 0 and 3. Label the wholes. Partition each whole into 5 unit fractions. Label all the fractions from 0 to 3. Use a separate paper if you need more space.

![Diagram showing fractions from 0/5 to 15/5]
Locate and label the following fractions on the number lines.

1. \(\frac{1}{2} \) \(\frac{4}{2} \) \(\frac{5}{2} \) \(\frac{4}{2} \)

\[\text{Number Line: } 0 \quad \frac{1}{2} \quad 1 \quad 2 \quad \frac{5}{2} \quad 3 \]

2. \(\frac{6}{3} \) \(\frac{11}{3} \) \(\frac{6}{3} \) \(\frac{8}{3} \) \(\frac{11}{3} \) \(\frac{12}{3} \)

\[\text{Number Line: } 2 \quad \frac{6}{3} \quad \frac{11}{3} \quad 3 \quad \frac{8}{3} \quad 4 \]

3. \(\frac{12}{4} \) \(\frac{13}{4} \) \(\frac{20}{4} \) \(\frac{23}{4} \) \(\frac{24}{4} \)

\[\text{Number Line: } 3 \quad \frac{12}{4} \quad \frac{13}{4} \quad 4 \quad \frac{20}{4} \quad 5 \quad \frac{23}{4} \quad 6 \]
4. Wayne went on a 4 km hike. He took a break at $\frac{4}{3}$ km. He took a drink of water at $\frac{10}{3}$ km. Show Wayne's hike on the number line. Include his starting and finishing place, and the 2 points where he stopped.

Start: $\frac{1}{3}$
Break: $\frac{3}{3}$
Drink: $\frac{9}{3}$
Finish: $\frac{12}{3}$

5. Ali wants to buy a piano. The piano measures $\frac{19}{4}$ ft. long. She has a space 5 ft. long for the piano in her house. Does she have enough room? Draw a number line to show and explain your answer.

Yes, Ali has enough room for the piano. $19\frac{3}{4}$ comes before $20\frac{4}{4}$ (or 6 feet) on the number line. So $19\frac{3}{4}$ is less than $20\frac{4}{4}$. The piano is less than 5 feet long.
Directions: Place the two fractions on the number line. Circle the fraction with the distance closest to 0. Then compare using >, <, or =.

1. \(\frac{1}{3} \) \(\square \) \(\frac{2}{3} \)

2. \(\frac{4}{6} \) \(\square \) \(\frac{1}{6} \)

3. \(\frac{1}{4} \) \(\square \) \(\frac{1}{8} \)

4. \(\frac{4}{5} \) \(\square \) \(\frac{4}{10} \)

5. \(\frac{8}{6} \) \(\square \) \(\frac{5}{3} \)

\[\frac{8}{6} = 1.33 \]
\[\frac{5}{3} = 1.66 \]
6. Liz and Jay each have a piece of string. Liz's string is \(\frac{4}{6} \) yard long, and Jay's string is \(\frac{5}{7} \) yard long. Whose string is longer? Draw a number line to model the length of both strings. Explain the comparison using pictures, numbers, and words.

Jay

Liz

Jay's string is longer than Liz's. \(\frac{4}{6} \) is closer to 0 than \(\frac{5}{7} \) is, therefore, it is less.

7. In a long jump competition, Wendy jumped \(\frac{9}{10} \) meter and Judy jumped \(\frac{10}{9} \) meters. Draw a number line to model the distance of each girl's long jump. Who jumped the shorter distance? Explain how you know using pictures, numbers, and words.

Wendy

Judy

Wendy jumped the shorter distance. \(\frac{9}{10} \) is not one whole. \(\frac{10}{9} \) is one whole and \(\frac{1}{9} \) more. \(\frac{9}{10} \) is closer to zero than \(\frac{10}{9} \).

8. Nikki has 3 pieces of yarn. The first piece is \(\frac{3}{6} \) feet long, the second piece is \(\frac{5}{3} \) feet long, and the third piece is \(\frac{3}{2} \) feet long. She wants to arrange them from the shortest to the longest. Draw a number line to model the length of each piece of yarn. Write a number sentence using \(<, >, \) or \(= \) to compare the pieces. Explain using pictures, numbers, and words.

First piece

Second piece

Third piece
1. Divide each number line into the given unit fractions. Then place the fractions. Write each whole as a fraction.

 a. thirds $\frac{6}{3}, \frac{5}{3}, \frac{8}{3}, \frac{5}{3}, \frac{6}{3}, \frac{8}{3}, \frac{9}{3}$

 \[
 \begin{array}{ccccccc}
 & \frac{1}{3} & & \frac{2}{3} & & \frac{3}{3} & \\
 1 & & & & & & 3
 \end{array}
 \]

 b. sixths $\frac{10}{6}, \frac{18}{6}, \frac{15}{6}, \frac{10}{6}, \frac{12}{6}, \frac{15}{6}, \frac{18}{6}$

 \[
 \begin{array}{ccccccc}
 & \frac{1}{6} & & \frac{2}{6} & & \frac{3}{6} & \\
 1 & & & & & & 3
 \end{array}
 \]

 c. fifths $\frac{14}{5}, \frac{7}{5}, \frac{11}{5}, \frac{14}{5}, \frac{15}{5}$

 \[
 \begin{array}{ccccccc}
 & \frac{1}{5} & & \frac{2}{5} & & \frac{3}{5} & \\
 1 & & & & & & 3
 \end{array}
 \]

2. Use the number lines above to compare the following fractions using $>$, $<$, or $=$.

 \[
 \begin{array}{cccccccc}
 & \frac{17}{6} & & \frac{15}{6} & & \frac{7}{3} & & \frac{9}{3} & & \frac{11}{5} & & \frac{8}{5} \\
 & \frac{4}{3} & & \frac{8}{6} & & \frac{13}{6} & & \frac{8}{3} & & \frac{11}{6} & & \frac{5}{3} \\
 & \frac{10}{6} & & \frac{3}{3} & & \frac{6}{3} & & \frac{12}{6} & & \frac{15}{5} & & \frac{5}{3}
 \end{array}
 \]
3. Use fractions from the number lines in Problem 1. Complete the sentence. Use a words, pictures, or numbers to explain how you made that comparison.

\[
\frac{5}{3} \text{ is greater than } \frac{10}{6}.
\]

\[
\frac{5}{3} \text{ is further from zero than } \frac{10}{6} \text{ so it is greater.}
\]

4. Use fractions from the number lines in Problem 1. Complete the sentence. Use a words, pictures, or numbers to explain how you made that comparison.

\[
\text{is less than } \text{.}
\]

5. Use fractions from the number lines in Problem 1. Complete the sentence. Use a words, pictures, or numbers to explain how you made that comparison.

\[
is equal to
\]
1. What fraction of the figure is shaded? Draw two different representations of the same fractional amount.

\[
\frac{3}{7}
\]

2. a. These two shapes both show \(\frac{4}{5} \). Are they equivalent? Why or why not?

\[
\text{The whole is not the same.}
\]

b. Draw two different representations of \(\frac{4}{5} \) that are equivalent.

3. Diana ran a quarter mile straight down the street. Becky ran a quarter mile on a track. Who ran more? Explain your thinking.

Both Becky and Diana ran the same distance (\(\frac{1}{4} \) mile).
Becky ran it in an oval shape and Diana ran a straight line.
1. Use the unit fractions on the right to count up on the number line. Label the missing fractions.

```
1/4  1  2  3  4  5  6  7  8
1/8  0  1/8 3/8 4/8 5/8 7/8 8/8
1/3  0  1/3 2/3 3/3 4/3 5/3 6/3
1/6  0  1/6 4/6 1  5/6 10/6 12/6
```

2. Use the number lines above to:
 - Color fractions equal to 1 purple.
 - Color fractions equal to 2 fourths yellow.
 - Color fractions equal to 2 blue.
 - Color fractions equal to 5 thirds green.
 - Write a pair of fractions that are equivalent.

Examples: \(\frac{1}{4} = \frac{2}{8}\)

\(\frac{2}{3} = \frac{4}{6}\)

\(\frac{3}{4} = \frac{6}{8}\)

Answers will vary.
3. Use the number lines on the previous page to make the number sentences true.

\[
\begin{align*}
\frac{1}{4} &= \frac{a}{8} & 6 &= \frac{12}{8} & 2 &= \frac{4}{6} \\
3 &= \frac{12}{6} & 3 &= \frac{6}{6} & 2 &= \frac{8}{8}
\end{align*}
\]

4. Mr. Fairfax ordered 3 large pizzas for a class party. Group A ate \(\frac{6}{6}\) of the first pizza, and Group B ate \(\frac{8}{6}\) of the second pizza. During the party, the class discussed which group ate more pizzas.

a. Did group A or B eat more pizza? Use words and and pictures to explain your answer to the class.

[Diagram showing comparison of fractions]

Group B ate more pizza. \(\frac{8}{6}\) is closer to zero and is less than \(\frac{6}{6}\). \(\frac{6}{6}\) = one whole and \(\frac{8}{6}\) more.

\[\text{\(\frac{6}{6}\) slices} \quad \text{and} \quad \text{\(\frac{8}{6}\) slices}\]

b. Later Group C ate all remaining slices of pizza. What fraction of the pizza did group C eat? Use words and pictures to explain your answer.

Group C ate \(\frac{4}{6}\) of the pizza. (See picture above.)
1. Write what fraction of the figure is shaded in the blanks then match the equivalent fractions.

\[
\begin{array}{ccc}
\frac{1}{2} & & \frac{4}{5} \\
\frac{2}{5} & & \frac{3}{6} \\
\frac{8}{10} & & \frac{4}{10} \\
\frac{12}{8} & & \frac{1}{4}
\end{array}
\]
2. Complete the fractions to make true statements.

\[
\frac{1}{2} = \quad \frac{3}{6} = \quad \frac{3}{9} = \quad \frac{3}{9} =
\]

3. Why does it take 3 copies of \(\frac{2}{6} \) to show the same amount as 1 copy of \(\frac{1}{2} \)? Explain your answer in words and pictures.

\[
\frac{3}{6} = \frac{1}{2}
\]

Three is half of 6 so it takes \(\frac{3}{6} \) to make \(\frac{1}{2} \).

4. How many ninths does it take to make the same amount as \(\frac{1}{3} \)? Explain your answer in words and pictures.

It takes 3 ninths to equal one third. Thirds are three times larger than ninths, so it takes 3 ninths to make one third.

5. A pie was cut into 8 slices equally. If Ruben ate \(\frac{3}{4} \) of the pie, how many slices did he eat? Write the answer in eighths. Explain your answer using a number line and words.

Ruben ate 6 slices or \(\frac{6}{8} \) of the pie.

\[
\frac{6}{8} = \frac{3}{4}
\]
1. On the number line above, use a crayon to divide each whole into 3 unit fractions and label each one above the line.

2. On the number line above, use a different color crayon to divide each whole into 6 unit fractions and label each one.

3. Write the fractions that name the same place on the number line below.

4. Using your number line to help, name the fraction equivalent to $\frac{20}{6}$. Name the fraction equivalent to $\frac{12}{3}$. Draw the part of the number line that would include these fractions below and label it.

$$\frac{20}{6} = \frac{\square}{3} \quad \frac{12}{3} = \frac{\square}{6}$$
1. On the number line above, use a colored pencil to divide each whole into 3 unit fractions and label each one above the line.

2. On the number line above, use a different colored pencil to divide each whole into 6 unit fractions and label each one.

3. Write the fractions that name the same place on the number line below.

 $\frac{2}{3} = \frac{4}{6}$ $\frac{1}{3} = \frac{2}{6}$ $\frac{3}{6} = \frac{5}{6}$ $\frac{4}{6} = \frac{8}{6}$ $\frac{5}{6} = \frac{15}{6}$ $\frac{6}{6} = \frac{12}{6}$

 $\frac{7}{6} = \frac{14}{6}$ $\frac{8}{6} = \frac{16}{6}$ $\frac{9}{6} = \frac{18}{6}$

4. Using your number line to help, name the fraction equivalent to $\frac{20}{6}$. Name the fraction equivalent to $\frac{12}{5}$. Draw the part of the number line that would include these fractions below and label it.
5. Write two different fraction names for the dot on the number line. You may use halves, thirds, fourths, fifths, sixths, eighths, or tenths.

\[
\frac{2}{3} = \frac{4}{6} \\
\frac{1}{4} = \frac{2}{8} \\
\frac{7}{15} = \frac{14}{10}
\]

6. Danielle and Mandy each ordered a large pizza for dinner. Danielle’s pizza was cut into sixths, and Mandy’s pizza was cut into twelfths. Danielle ate 2 sixths of her pizza. If Mandy wants to eat the same amount of pizza as Danielle, how many slices of pizza will she have to eat? Write the answer as a fraction.

Draw a number line to explain your answer.

Mandy will need to eat \(\frac{3}{2}\) of her pizza to equal \(\frac{3}{2}\) of Danielle’s. \(\frac{3}{2}\) and \(\frac{3}{2}\) are at the same place on the number line and so are equal fractions.
1. Write number bonds as indicated. Partition and label the number line to show the unit fractions of the number bond. Don’t forget to rename the 0 and 1 as fractions of the given unit.

- **Fifths**
 - 1
 - \(\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{5}{5} \)

- **Sixths**
 - 1
 - \(\frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \frac{6}{6} \)

- **Sevenths**
 - 1
 - \(\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \frac{7}{7} \)

- **Eighths**
 - 1
 - \(\frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{4}{8}, \frac{5}{8}, \frac{6}{8}, \frac{7}{8}, \frac{8}{8} \)
2. Circle all the fractions above that are equal to 1. Write them in a number sentence below.

\[
\frac{5}{5} = \frac{6}{6} = \frac{7}{7} = \frac{8}{8}
\]

3. What pattern do you notice in the fractions that are equivalent to 1? Following this pattern, how would you write the next whole as a fraction?

Both the numerator and denominator are the same number.

\[
\frac{9}{9}
\]

4. In an Art class, Mr. Joselyn gave everyone a 1 foot skewer to measure and cut. Vivian broke hers into 5 equal pieces, and Scott broke his into 7 equal pieces. Scott said to Vivian, “The total length of my stick must be longer than yours because I have 7 pieces and you only have 5.” Is Scott correct? Use words, pictures, or a number line to help you explain.

No, Scott is not correct. If everyone started with a one foot skewer that just means that Scott's 7 pieces are shorter than Vivian's 5 pieces that came out of the same one foot length.

\[
\frac{1}{7} \frac{1}{7}
\]
1. Label the following models as a fraction inside the boxes.

- Triangle: 1 whole
 - Fraction: \(\frac{4}{4}\)
 - Fraction: \(\frac{4}{2}\)
- Circle: 1 whole
 - Fraction: \(\frac{8}{8}\)
 - Fraction: \(\frac{8}{4}\)
- Line: 1 whole
 - Fraction: \(\frac{8}{1}\)
2. Fill in missing whole numbers. Then rename the wholes in the boxes.

\[
\begin{array}{cccccccc}
\frac{0}{1} & \frac{2}{1} & \frac{4}{1} & \frac{6}{1} & \frac{8}{1} & \frac{10}{1} & \frac{12}{1} \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\frac{15}{1} & \frac{16}{1} & \frac{17}{1} & \frac{18}{1} & \frac{19}{1} & \frac{20}{1} & \frac{21}{1} \\
\end{array}
\]

3. Explain the difference between these fractions using a number line, pictorial model, or words.

\[
\frac{5}{1} \quad \text{(the denominator)}
\]

\[
\frac{5}{1} \text{ is equal to 5 wholes. If 1 is the whole, then you have 5 of them or 5.}
\]

\[
\frac{5}{5} \quad \text{(the denominator)}
\]

\[
\frac{5}{5} \text{ is equal to 1 whole. If 5 is the whole, then } \left(\frac{5}{5} \right) \text{ you have one .}
\]
1. Partition the number line to show the unit fractions. Then draw number bonds with copies of 1 whole for the circled whole numbers.

Sixths

0 = \(\frac{0}{6} \) sixths

1 = \(\frac{6}{6} \) sixths

2 = \(\frac{12}{6} \) sixths

0 = \(\frac{0}{2} \) sixths

1 = \(\frac{1}{2} \) sixths

2 = \(\frac{2}{2} \) sixths

Fifths

2 = \(\frac{6}{5} \) fifths

3 = \(\frac{15}{5} \) fifths

4 = \(\frac{20}{5} \) fifths

2 = \(\frac{10}{5} \) fifths

3 = \(\frac{15}{5} \) fifths

4 = \(\frac{20}{5} \) fifths
2. Write the fraction that names the whole numbers for each unit fraction. The first one has been done for you.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>thirds</td>
<td>6/3</td>
<td>9/3</td>
<td>12/3</td>
</tr>
<tr>
<td>sevenths</td>
<td>14/7</td>
<td>21/7</td>
<td>28/7</td>
</tr>
<tr>
<td>eighths</td>
<td>16/8</td>
<td>24/8</td>
<td>32/8</td>
</tr>
<tr>
<td>tenths</td>
<td>20/10</td>
<td>30/10</td>
<td>40/10</td>
</tr>
</tbody>
</table>

3. Rider dribbles the ball down 1/3 of the basketball court on the first day of practice. Each day after that he dribbles 1/3 of the way more than he did the day before.

a. Draw a number line to represent the court. Partition the number line to represent how far Rider dribbles on Day 1, Day 2, and Day 3 of practice. What fraction of the way does he dribble on Day 3?

Rider dribbles 3/3 of the court on Day 3.
1. Use the tape diagram to model equivalent fractions. Fill in the blanks and answer the following questions.

| 2 tenths is equal to \(\underline{\frac{1}{} \text{ fifths.}} \) |
| \(\frac{2}{10} = \frac{1}{5} \) |

The whole stays the same.

What happened to the size of the equal parts when there were less equal parts?
They get larger.

| 1 third is equal to \(\underline{\frac{3}{} \text{ ninths.}} \) |
| \(\frac{1}{3} = \frac{3}{9} \) |

The whole stays the same.

What happened to the size of the equal parts when there were more equal parts?
The parts get smaller.

2. 8 students want to share 2 pizzas that are the same size, represented by the 2 circles below. They notice that the first pizza is cut into 4 equal slices, and the second is cut into 8 equal slices. How can the 8 students share the pizzas equally, without breaking any of the pieces?

| 4 students will get \(\frac{7}{8} \) of this pizza. |
| \(\frac{1}{4} = \frac{2}{8} \) |

4 students share 1st pizza

© 2013 Common Core, Inc. Some rights reserved. commoncore.org

engageNY

5.E.95
3. When the whole is the same, why does it take 4 copies of 1 tenth to show 2 copies of 1 fifth? Draw a model to support your answer.

It takes 4 copies of $\frac{1}{10}$ to equal 2 copies of $\frac{1}{5}$, when the whole is the same fifths are 2 times as big as tenths so it takes twice as many tenths to equal the 2 fifths. $2 \times 2 = 4$

4. When the whole is the same, how many eighths does it take to make 1 fourth? Draw a model to support your answer.

When the whole is the same it takes $\frac{3}{8}$ to make $\frac{1}{4}$.

5. Mr. Pham cuts a cake into 8 equal slices. Then he cuts every slice in half. How many of the small slices does he have? Use words and numbers to explain your answer.

Mr. Pham has 16 small slices. Each piece became 2 slices. So $8 \times 2 = 16$.
Directions: Shade the models to compare the following fractions. Circle the larger fraction for each problem.

1.
- 1 half
- 1 fifth

2.
- 2 sevenths
- 2 fourths

3.
- 4 fifths
- 4 ninths

4.
- 5 sevenths
- 5 tenths

5.
- 4 sixths
- 4 fourths
6. In science Saleem and Edwin used an inch ruler to measure the length of each of their small caterpillars. Saleem's caterpillar measured \(\frac{3}{4} \) of an inch, and Edwin's caterpillar measured \(\frac{3}{8} \) of an inch. Whose caterpillar is longer? Use a tape diagram to show your work.

Saleem's caterpillar is longer.

\[\frac{3}{4} > \frac{3}{8} \]

7. Lily and Jasmine are baking the same size chocolate cake. Lily put \(\frac{5}{10} \) of a cup of sugar into her cake, and Jasmine put \(\frac{5}{6} \) of a cup of sugar into her cake. Who used less sugar? Use a tape diagram to show your work.

Lilly used less sugar.

\[\frac{5}{10} < \frac{5}{6} \]
Name ___________________________ Date ______________________

Directions: Label each shaded fraction. Use >, <, or = to compare.

1. \[\frac{5}{12} \quad < \quad \frac{5}{6}\]
2. \[\frac{6}{6} \quad > \quad \frac{6}{12}\]
3. \[\frac{2}{4} \quad > \quad \frac{2}{9}\]
4. \[\frac{1}{2} \quad > \quad \frac{1}{6}\]

Directions: Partition each number line into the units labeled on the left. Then, use the number lines to compare the fractions.

- **Thirds**
 - \[0 \quad \frac{1}{3} \quad \frac{2}{3} \quad \frac{3}{3}\]
- **Sixths**
 - \[0 \quad \frac{1}{6} \quad \frac{2}{6} \quad \frac{3}{6} \quad \frac{4}{6} \quad \frac{5}{6} \quad \frac{6}{6}\]
- **Ninths**
 - \[0 \quad \frac{1}{9} \quad \frac{2}{9} \quad \frac{3}{9} \quad \frac{4}{9} \quad \frac{5}{9} \quad \frac{6}{9} \quad \frac{7}{9} \quad \frac{8}{9} \quad \frac{9}{9}\]

5. \[\frac{2}{6} \quad < \quad \frac{2}{3}\]
6. \[\frac{5}{9} \quad < \quad \frac{5}{6}\]
7. \[\frac{3}{3} \quad > \quad \frac{3}{9}\]
Draw your own models to compare the following fractions.

8. \(\frac{7}{10} \) \(< \) \(\frac{7}{8} \)

9. \(\frac{4}{5} \) \(> \) \(\frac{4}{5} \)

10. For an art project, Michello used \(\frac{3}{4} \) of a glue stick. Yamin used \(\frac{2}{3} \) of an identical glue stick. Who used more of the glue stick? Use the model below to support your answer. Be sure to label 1 whole as 1 glue stick.

Michello

Yamin

Michello used more glue stick. \(\frac{3}{4} > \frac{2}{3} \).

11. After gym class, Jahsir drank \(\frac{2}{8} \) eighths of a bottle of water. Jade drank \(\frac{2}{5} \) fifths of an identical bottle of water. Who drank less water? Use the model below to support your answer.

Jahsir

Jade

Jahsir drank less water. \(\frac{2}{8} < \frac{2}{5} \).